
s a e r T a S o r i s o perioduli samecniero Jurnali `i n t e l e q t i~

1 (75), 2024
I N T E R N A T I O N A L PERIODICAL SCIENTIFIC JOURNAL “I N T E L L E C T I”

95

0619 ინფორმაციისა და კომუნიკაციის ტექნოლოგიები

INFORMATION AND COMMUNICATION TECHNOLOGIES (ICTS)

Training and Optimization of Artificial Intelligence Systems
Giorgi Kakashvili

David Aghmashenebeli National Defence Academy of Georgia

დავით აღმაშენებლის სახელობის საქართველოს ეროვნული თავდაცვის აკადემია

E-mail: giorgikakashvili1@gmail.com

Abstract

To develop reliable Artificial Intelligence (AI) systems, it is vital to have training and optimization as the basic

steps. This paper presents sophisticated approaches for training and optimizing AI models, which highlights the

importance of these methodologies as well as the challenges involved. The article also includes a step-by-step

example of how to train a convolutional neural network on MNIST using Python and TensorFlow. It is possible to

experience all the complexity along with scientific methods that are needed in current AI research by examining

this instance, which includes algorithmic details as well as model evaluation metrics. Furthermore, I present an

innovative approach for improving model training efficiency and accuracy during optimization; thereby presenting

new perspectives on the future direction of AI.

Keywords: Artificial Intelligence, TensorFlow, Convolutional Neural Network, training process, optimization.

Artificial Intelligence (AI) has revolutionized many areas through enabling machines to perform tasks that

require human-like intelligence. The success of AI models depends largely on how well they are trained and

optimized. This article delves into advanced methods used in these processes, looking at computational complexities,

overfitting, and the problem of data quality. A detailed case study with TensorFlow on the MNIST dataset is offered

as a practical illustration of these ideas, providing a solid foundation for comprehending the building up of robust AI

systems. Moreover, we reveal a new optimization technique that is promised to greatly improve artificial intelligence

training.

The training process serves as the foundation for modeling AI. It involves instruction of the AI system on

pattern recognition, decision-making, and improvement of its performance over time. Through training, a model

transforms from just being parameters into an effective system able to address real-life problems. Some key aspects

pointing out the necessity of this process include:

▪ Pattern Recognition: Training these intelligent systems gives them the ability to learn difficult patterns

present in data; just like computer vision algorithms would learn edges or color gradients in images

represented in form pixels only through seeing thousands/millions of examples containing

shapes/edges/textures in different orientations developed after training on large libraries labeled that

distinguish objects among many classes including animals with hundreds of pictures given in various angles

having different poses alongside bikes plus others [1].

▪ Generalization: This is to say that a well-trained model can adequately extend its learning from data of training

to new, unseen data. A model needs this ability to work effectively in real-life situations whereby it has to

deal with different kinds of variations in the data [2].

▪ Adaptation: Training makes models adaptable specific tasks and domains. The task is solved as the model

learns by iteratively modifying its parameters through optimization algorithms [3].

▪ Error Minimization: The process of training involves mechanisms designed for minimizing errors by

comparing predictions against actual outcomes. Backpropagation, for instance, adjusts model’s parameters

with the aim of reducing prediction errors [4].

▪ Continuous Improvement: This means that training is not a one-time event but an ongoing cycle where

models are continuously refined or improved upon with new data available so that they remain relevant over

time [5].

s a e r T a S o r i s o perioduli samecniero Jurnali `i n t e l e q t i~

1 (75), 2024
I N T E R N A T I O N A L PERIODICAL SCIENTIFIC JOURNAL “I N T E L L E C T I”

96

The process of training AI models involves numerous complex steps such as data preprocessing, algorithmic

implementation, and model selection including the actual training procedure itself. Each step significantly

contributes to ensuring an effective learning process on the available dataset. In order for an AI model to be trained,

there should be a first step taken which concerns data collection and preprocessing. To enable meaningful patterns

being learned by the model high-quality well-prepared information is required. In our case study, we use the MNIST

dataset of handwritten digits, which is widely recognized for benchmarking machine learning algorithms.

import tensorflow as tf

from tensorflow.keras.datasets import mnist

from tensorflow.keras.utils import to_categorical

Load the MNIST dataset

(train_images, train_labels), (test_images, test_labels) = mnist.load_data()

Normalize the images to the range [0, 1]

train_images = train_images / 255.0

test_images = test_images / 255.0

One-hot encode the labels

train_labels = to_categorical(train_labels, 10)

test_labels = to_categorical(test_labels, 10)

It is important to choose the right model design for this problem. We have used a Convolutional Neural

Network (CNN) for this example, which is known to be highly effective in image processing tasks. Their

convolutional layers allow CNNs to capture spatial hierarchies of images through filters that detect edges, corners

and textures among other things [1][2].

From tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense, Dropout

Define the model architecture

model = Sequential([

 Conv2D(32, kernel_size=(3, 3), activation=’relu’, input_shape=(28, 28, 1)),

 MaxPooling2D(pool_size=(2, 2)),

 Dropout(0.25),

 Conv2D(64, kernel_size=(3, 3), activation=’relu’),

 MaxPooling2D(pool_size=(2, 2)),

 Dropout(0.25),

 Flatten(),

 Dense(128, activation=’relu’),

 Dropout(0.5),

 Dense(10, activation=’softmax’)

])

Compile the model

model.compile(optimizer=’adam’, loss=’categorical_crossentropy’, metrics=[‘accuracy’])

The training process of artificial intelligence models is iterative and involves several fundamental stages that

are crucial for the model to learn from data effectively. The training process involves several key steps:

Forward propagation is the initial stage where input data is passed through the neural network layers to make

predictions. Each layer performs operations that transform the input data, typically involving weighted sums and

activation functions. The output of one layer serves as the input to the next layer until the final output layer produces

predictions. In a neural network, each neuron in a layer receives inputs, computes a weighted sum, applies an

activation function, and passes the result to the next layer. Mathematically, this can be represented as:

𝑧[𝑙] = 𝑊[𝑙]𝑎[𝑙−1] + 𝑏[𝑙]

s a e r T a S o r i s o perioduli samecniero Jurnali `i n t e l e q t i~

1 (75), 2024
I N T E R N A T I O N A L PERIODICAL SCIENTIFIC JOURNAL “I N T E L L E C T I”

97

𝑎[𝑙] = 𝑔[𝑙](𝑧[𝑙])
where 𝑧[𝑙] is the weighted sum at layer 𝑙, 𝑎[𝑙] is the activation of layer 𝑙, 𝑊 [𝑙] and

𝑏[𝑙] are the weights and biases of layer 𝑙, and 𝑔[𝑙] is the activation function of layer 𝑙.

Loss Calculation: The predictions are compared to the actual labels using a loss function (e.g., categorical cross-

entropy). The loss function quantifies how well or poorly the model’s predictions align with the actual outcomes.

Backward Propagation (Backpropagation): Gradients are calculated using the chain rule of calculus to

minimize the loss. These gradients indicate the direction and magnitude of adjustments needed. The gradients are

computed layer by layer, starting from the output layer back to the input layer.

Parameter Update: The model’s parameters are updated using an optimization algorithm (e.g., Adam

optimizer) to minimize the loss. Adam adjusts the parameters using the gradients and other factors such as

momentum and learning rate [7]:

𝑊 [𝑙] = 𝑊[𝑙] − 𝛼 ∗ 𝑎𝑑𝑎𝑚_𝑚_𝑤[𝑙]/(√𝑎𝑑𝑎𝑚_𝑣_𝑤[𝑙]+∈)

𝑏[𝑙] = 𝑏[𝑙] − 𝛼 ∗ 𝑎𝑑𝑎𝑚_𝑚_𝑏[𝑙]/(√𝑎𝑑𝑎𝑚_𝑣_𝑏[𝑙]+∈)

where 𝛼 is the learning rate, 𝑎𝑑𝑎𝑚_𝑚_𝑤[𝑙] and 𝑎𝑑𝑎𝑚_𝑣_𝑤[𝑙] are the estimates of the first and second moments

of the gradients for weights, 𝛼 ∗ 𝑎𝑑𝑎𝑚_𝑚_𝑏[𝑙] and 𝑎𝑑𝑎𝑚_𝑣_𝑏[𝑙] are the estimates of the first and second moments of

the gradients for biases, and ∈ is a small constant to prevent division by zero.

Reshape the data to include the channel dimension

train_images = train_images.reshape(train_images.shape[0], 28, 28, 1)

test_images = test_images.reshape(test_images.shape[0], 28, 28, 1)

Train the model

history = model.fit(train_images, train_labels, batch_size=64, epochs=10, validation_split=0.2)

Adaptive Gradient Clipping (AGC) enhances training stability by adjusting the clipping threshold dynamically

based on the gradient's norms. This method prevents the gradients from exploding or vanishing, ensuring more

effective training. The AGC process involves:

Calculate the gradient norm: ||𝑔𝑡||

Determine the clipping threshold: 𝑇𝑡 =
𝐶

1+√𝑡
 , where 𝐶 is a constant.

Clip the gradients: 𝑔𝑡 = 𝑔𝑡 ∗ 𝑚𝑖𝑛(1,
𝑇𝑡

||𝑔𝑡||
)

Update the parameters: 𝜃𝑡+1 = 𝜃𝑡 − 𝜂𝑔𝑡

class AGCOptimizer(tf.keras.optimizers.Optimizer):

 def __init__(self, learning_rate=0.001, clip_constant=1.0, name="AGCOptimizer", **kwargs):

 super().__init__(name, **kwargs)

 self.learning_rate = learning_rate

 self.clip_constant = clip_constant

 self.iterations = tf.Variable(0, dtype=tf.int64, trainable=False)

 def _resource_apply_dense(self, grad, var, apply_state=None):

 norm = tf.norm(grad)

 threshold = self.clip_constant / (1.0 + tf.sqrt(tf.cast(self.iterations, tf.float32)))

 clipped_grad = grad * tf.minimum(1.0, threshold / norm)

 var.assign_sub(self.learning_rate * clipped_grad)

 def _resource_apply_sparse(self, grad, var, indices, apply_state=None):

 # Handle sparse gradients if necessary pass

Instantiate and compile the model with AGC optimizer

agc_optimizer = AGCOptimizer(learning_rate=0.001)

model.compile(optimizer=agc_optimizer, loss='categorical_crossentropy', metrics=['accuracy'])

s a e r T a S o r i s o perioduli samecniero Jurnali `i n t e l e q t i~

1 (75), 2024
I N T E R N A T I O N A L PERIODICAL SCIENTIFIC JOURNAL “I N T E L L E C T I”

98

After training, the model is evaluated on the test dataset to assess its performance. Key metrics such as

accuracy, precision, recall, and F1-score are used for comprehensive evaluation. Visualization of the training process

through accuracy and loss plots helps monitor the model's learning behavior.

Evaluate the model on the test data

test_loss, test_accuracy = model.evaluate(test_images, test_labels)

print(f'Test accuracy: {test_accuracy}')

Plot training & validation accuracy and loss values

import matplotlib.pyplot as plt

plt.figure(figsize=(12, 4))

plt.subplot(1, 2, 1)

plt.plot(history.history['accuracy'])

plt.plot(history.history['val_accuracy'])

plt.title('Model accuracy')

plt.xlabel('Epoch')

plt.ylabel('Accuracy')

plt.legend(['Train', 'Validation'], loc='upper left')

plt.subplot(1, 2, 2)

plt.plot(history.history['loss'])

plt.plot(history.history['val_loss'])

plt.title('Model loss')

plt.xlabel('Epoch')

plt.ylabel('Loss')

plt.legend(['Train', Validation'], loc='upper left') plt.show()

The process of training and optimizing AI models presents several challenges that must be addressed to

develop robust and efficient systems.

Training deep learning models, particularly those with millions of parameters, requires substantial

computational resources. The complexity of these models leads to high computational demands, both in terms of

time and hardware. Techniques such as mini-batch gradient descent, parallel computing, and the use of Graphics

Processing Units (GPUs) and Tensor Processing Units (TPUs) are employed to mitigate these challenges [7] [8].

However, ensuring efficient resource utilization and reducing training time remains an ongoing research area.

Balancing model complexity is crucial to prevent overfitting (where the model learns noise and irrelevant

details from the training data) and underfitting (where the model is too simplistic to capture underlying patterns).

Regularization techniques such as dropout, L1/L2 regularization, and data augmentation are commonly used to

combat overfitting. Cross-validation and early stopping are also employed to monitor model performance and halt

training once performance on a validation set plateaus [9] [10]. Developing models that generalize well to unseen

data is a significant challenge in AI research.

High-quality, representative data is essential for effective model training. The availability of large datasets is

often a limiting factor in training sophisticated AI models. Data preprocessing steps such as normalization, handling

missing values, and data augmentation are critical for improving data quality and increasing the dataset size [11] [12].

Additionally, ensuring that the data is representative of the real-world scenarios the model will encounter is crucial

for robust performance.

Selecting optimal hyperparameters (e.g., learning rate, batch size, number of layers) significantly impacts

model performance. Hyperparameter tuning involves searching for the best combination of parameters through

techniques such as grid search, random search, or Bayesian optimization [13]. This process is computationally

expensive and often requires extensive experimentation.

training and optimization is the key to good ai. Tensorflow and the mnist dataset are the main techniques and

challenges in this article. Agc is a new optimization technique that we developed to improve the efficiency and

accuracy of model training. By recognizing and addressing these features, researchers and practitioners can construct

robust, efficient ai models that can tackle challenging problems.

s a e r T a S o r i s o perioduli samecniero Jurnali `i n t e l e q t i~

1 (75), 2024
I N T E R N A T I O N A L PERIODICAL SCIENTIFIC JOURNAL “I N T E L L E C T I”

99

Bibliography

1. Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT Press.

2. LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436-444.

3. Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Springer.

4. Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-propagating

errors. Nature, 323(6088), 533-536.

5. Murphy, K. P. (2012). Machine Learning: A Probabilistic Perspective. MIT Press.

6. Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

7. Huang, G., Liu, Z., Van Der Maaten, L., & Weinberger, K. Q. (2017). Densely Connected Convolutional

Networks. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),

4700-4708.

8. Smith, S. L., Kindermans, P. J., Ying, C., & Le, Q. V. (2018). Don't Decay the Learning Rate, Increase the

Batch Size. arXiv preprint arXiv:1711.00489.

9. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014). Dropout: A simple

way to prevent neural networks from overfitting. The Journal of Machine Learning Research, 15(1), 1929-

1958.

10. Prechelt, L. (1998). Early Stopping - But When?. Neural Networks: Tricks of the Trade, 55-69.

11. Shorten, C., & Khoshgoftaar, T. M. (2019). A survey on Image Data Augmentation for Deep Learning.

Journal of Big Data, 6(1), 60.

12. Zhang, H., Cisse, M., Dauphin, Y. N., & Lopez-Paz, D. (2018). mixup: Beyond Empirical Risk

Minimization. arXiv preprint arXiv:1710.09412.

13. Bergstra, J., & Bengio, Y. (2012). Random Search for Hyper-Parameter Optimization. Journal of Machine
Learning Research, 13, 281-305.

გიორგი კაკაშვილი

AI სისტემების წვრთნის პროცესი და ოპტიმიზება

რეფერატი

ხელოვნური ინტელექტის (AI) სისტემების ტრენინგისა და ოპტიმიზების პროცესები ძირითადი

საფუძველია ეფექტური მოდელების განვითარებისათვის. მოცემულ სტატიაში განხილულია ტრენინგისა

და ოპტიმიზაციის მოწინავე მეთოდები, ასევე წარმოდგენილია მათი მნიშვნელობა და არსებულ

გამოწვევები. წარმოდგენილია დეტალური კვლევა TensorFlow-ის გამოყენებით MNIST მონაცემთა

ნაკრებში კონვულუციური ნეირონული ქსელის (CNN) ტრენინგისა და ოპტიმიზების მაგალითით.

რომელიც შეიცავს ალგორითმულ დეტალებსა და მოდელის შეფასების მეტრიკებს, ვაჩვენებთ

თანამედროვე AI კვლევების სირთულეებს და სამეცნიერო მოთხოვნებს. გარდა ამისა, შემუშავებულია

ახალი ოპტიმიზების მეთოდი, რომელიც აუმჯობესებს მოდელის ტრენინგის ეფექტიანობას და სიზუსტეს,

რაც ახალი პერსპექტივების გაღებას მოასწავებს AI განვითარებაში.

საკვანძო სიტყვები: ხელოვნური ინტელექტი, TensorFlow, კონვოლუციური ნეირონული ქსელი,

წვრთნის პროცესი, ოპტიმიზება.

